Site menu |
|
Input form |
|
Search |
|
Statistics |
Total online: 1 Guests: 1 Users: 0 |
|
Welcome, Guest · RSS |
14.10.2024, 02:54 |
|
Application of hypercomplex numbers and Clifford algebras
(1809 - 1877) Invention of noncommutative algebra 1844
Invention of Clifford algebra 1876
Invention of Hyperbolic quaternions 1900
(1831-1879) Discovery of equations for electromagnetic field 1862
Vector algebra and gravitoelectromagnetism
(1902 - 1984) Invention of 4-matrix algebra 1928 | Quaternions - W.R.Hamilton, "Lectures on Quaternions". Royal Irish Academy, (1853).
- W.R.Hamilton, "Elements of Quaternions”. University of Dublin Press. (1866).
- A.Macfarlane "Hyperbolic Quaternions" Proceedings of the Royal Society at Edinburgh, 1899-1900 session, pp. 169–181 (1900).
- I.L.Kantor, A.S.Solodovnikov – Hypercomplex numbers: an elementary introduction to algebras, Springer-Verlag, 1989.
- A.V.Berezin, Yu.A.Kurochkin and E.A.Tolkachev - Quaternions in relativistic physics. Minsk: Nauka y Tekhnika, 1989 (in Russian).
- F.Gürsey and H.C.Tze - On the role of division, Jordan and related algebras in particle physics. Singapore: World Scientific, 1996.
- K. Gürlebeck, W. Sprössig - Quaternionic and Clifford Calculus for Physicists and Engineers. John Wiley & Sons, 1997.
- G.M.Dixon – Division algebras: octonions, quaternions, complex numbers and the algebraic design of physics (Mathematics and its applications), Springer, 2006.
- D.Smith, J.H.Conway – On quaternions and octonions, Pub. AK Peters, 2003.
- S.L.Adler – Quaternionic quantum mechanics and quantum fields, New York: Oxford University Press, 1995.
- S.L.Adler – Time-dependent perturbation theory for quaternionic quantum mechanics, with application to CP nonconservation in K-meson decays, Phys. Rev. D, 34(6), 1871-1877, (1986).
- S.L.Adler – Scattering and decay theory for quaternionic quantum mechanics, and the structure of induced T nonconservation, Phys. Rev. D, 37(12), 3654-3662, (1988).
- A.J.Davies, B.H.J.McKellar – Nonrelativistic quaternionic quantum mechanics in one dimension, Phys. Rev. A, 40(8), 4209-4214, (1989).
- A.J.Davies – Quaternionic Dirac equation, Phys. Rev. D, 41(8), 2628-2630, (1990).
- S.De Leo, P.Rotelli – Quaternion scalar field, Phys. Rev. D, 45(2), 575-579, (1992).
- S.De Leo - Quaternionic electroweak theory, Journal of Physics G: Nuclear and Particle Physics, 22(8), 1137, (1996).
- A.Gsponer, J.P.Hurni – Quaternions in mathematical and physics (1), e-print arXiv:math-ph/0510059v3 (2006).
- A.Gsponer, J.P.Hurni – Quaternions in mathematical and physics (2), e-print arXiv:math-ph/0511092v3 (2006)
- V.Majernik – Quaternionic formulation of the classical fields, Advances in Applied Clifford Algebras, 9(1), 119-130 (1999).
- K.Imaeda – A new formulation of classical electrodynamics, Nuovo cimento, v. 32, no 1, 138-162 (1976).
- M.Tanışlı - Gauge transformation and electromagnetism with biquaternions, Europhysics Letters, 74(4), 569-573 (2006).
- S.Demir and K.Özdas - Dual quaternionic reformulation of classical electromagnetism, Acta Physica Slovaca, 53(6), 429-436 (2003).
- S.Demir - Matrix realization of dual quaternionic electromagnetism, Central European Journal of Physics, 5(4), 487-506 (2007).
- S.Demir, M.Tanişli , N.Candemir - Hyperbolic quaternion formulation of electromagnetism, Advances in Applied Clifford Algebras, 20(3-4), 547-563 (2010).
- S.Demir, M.Tanışlı - A compact biquaternionic formulation of massive field equations in gravi-electromagnetism, European Physical Journal-Plus, 126(11), 115 (2011).
- M.Tanişli , M.Emre Kansu, S.Demir - Supersymmetric quantum mechanics and euclidean dirac operator with complexified quaternions, Modern Physics Letters A,28(8), 1350026 (2013).
- S.Ulrych - The Poincaré mass operator in terms of a hyperbolicalgebra, Physics Letters B, 612(1-2), 89 (2005) ArXiv.
- S.Ulrych - Considerations on the hyperbolic complexKlein-Gordon equation, Journal of Mathematical Physics, 51(6), 063510 (2010) ArXiv.
- S.Ulrych - Higher spin quaternion waves in the Klein-Gordon theory, International Journal of Theoretical Physics, 52(1), 279 (2013) ArXiv.
- V.V.Kravchenko - Quaternionic reformulation of Maxwell's equations for inhomogeneous media and new solutions, ArXiv: http://arxiv.org/abs/math-ph/0104008
- V. G. Kravchenko, V. V. Kravchenko - Quaternionic factorization of theSchrödinger operator and its applications to some first order systems ofmathematical physics.Journal of Physics A, 2003, v. 36, No. 44, 11285-11297. (available from arxiv.org)
- S. M. Grudsky, K. V. Khmelnytskaya, V. V. Kravchenko - On a quaternionic Maxwell equation for the time-dependentelectromagnetic field in a chiral medium. Journal of Physics A, 2004, v. 37, 16, 4641-4647 (available from arxiv.org).
Octonions
- S.Okubo – Introduction to octonion and other non-associative algebras in physics(Montroll memorial lecture series in mathematical physics, 2) Cambridge University Press, 1995.
- M.Gogberashvili – Octonionic electrodynamics, J. Phys. A.: Math. Gen., 39, 7099-7104, (2006).
- A.Gamba – Maxwell’s equations in octonion form, Nuovo Cimento A, 111(3), 293-302, (1998).
- T.Tolan, K.Özdas, M.Tanişli– Reformulation of electromagnetism with octonions, Nuovo Cimento B, 121(1), 43-55, (2006).
- R.Penney – Octonions and Dirac equation, Amer. J. Phys., 36, 871-873 (1968).
- A.A.Bogush, Yu.A.Kurochkin – Cayley-Dickson procedure, relativistic wave equations and supersymmetric oscillators, Acta Applicandae Mathematicae, 50, 121-129 (1998)
- S.De Leo, K.Abdel-Khalek – Octonionic Dirac equation, Progress of Theoretical Physics, 96, 833-846 (1996). (arXiv:hep-th/9609033v1 (1996)),
- M.Tanişli, M.Emre Kansu - Octonionic Maxwell’s equations for bi-İsotropic media, Journal of Mathematical Physics, 52(5), 053511 (2011).
- M.Tanişli, M. Emre Kansu, S.Demir - A new approach to Lorentz invariance on electromagnetism with hyperbolic octonions, European Physical Journal-Plus, 127(6), 69, (2012).
- S.Demir - Hyperbolic octonion formulation of gravitational field equations, International Journal of Theoretical Physics, 52(1), 105-116 (2013).
- J.Köplinger - Nonassociative quantum theory on octooctonion algebra, Journal of hysical Mathematics, 1, S090501 (2009).
- B.C. Chanyal, P.S. Bisht, O.P.S. Negi - Generalized octonion electrodynamics, International Journal of Theoretical Physics, 49(6), 1333 (2010).
- V. Dzhunushaliev, Nonassociativity, supersymmetry, and hidden variables, Journal of Mathematical Physics 49, 042108 (2008).
- V. Dzhunushaliev - Hidden structures in quantum mechanics, Journal of Generalized Lie Theory and Applications, 3(1), 33–38 (2009).
- B.C. Chanyal, P.S. Bisht, O.P.S. Negi - Octonion and conservation laws for dyons, International Journal of Modern Physics A, 28(26), 1350125 1-17 (2013).
- M.E. Kansu - An analogy between macroscopic and microscopic systems for Maxwell’s equations in higher dimensions. European Physical Journal - Plus, 128, 149 (2013).
Sedenions
- K.Imaeda, M.Imaeda – Sedenions: algebra and analysis, Appl. Math. Comp., 115, 77-88 (2000).
- K.Carmody – Circular and hyperbolic quaternions, octonions, and sedenions, Appl. Math. Comput., 28, 47-72 (1988).
- K.Carmody – Circular and hyperbolic quaternions, octonions, and sedenions – further results, Appl. Math. Comput., 84, 27-47 (1997).
- J.Köplinger – Dirac equation on hyperbolic octonions, Appl. Math. Comput., 182, 443-446 (2006).
- S.Demir, M.Tanişli - Sedenionic formulation for generalized fields of dyons, International Journal of Theoretical Physics, 51(4), 1239-1252 (2012).
- V. Dzhunushaliev - Toy Models of a Nonassociative Quantum Mechanics, Advances in High Energy Physics, Volume 2007, Article ID 12387, 10 pages.
- V.L. Mironov, S.V. Mironov — Associative space-time sedenions, http://vixra.org/abs/1401.0162 (2014).
- V.L. Mironov, S.V. Mironov - Reformulation of relativistic quantum mechanics and field theory equations with space - time sedenions,http://vixra.org/abs/1402.0157
Clifford algebras - B.Jancewicz - Multivectors and Clifford Algebra in Electrodynamics, World Scientific, 1988.
- W.M.Pezzaglia – Clifford algebra derivation of the characteristic hypersurfaces of Maxwell’s equations, e-print arXiv:hep-th/9211062v1 (1992).
- W.E.Baylis, G.Jones – The Pauli algebra approach to special relativity, J. Phys. A: Math. Gen., 22, 1-15, (1989).
- A.M.Shaarawi – Clifford algebra formulation of an electromagnetic charge-current wave theory, Foundations of physics, 30(11), 1911-1941, (2000).
- D.Hestenes – Observables, operators, and complex numbers in the Dirac theory, Journal of Mathematical Physics, 16, 556-572 (1975).
- D.Hestenes – Clifford algebra and the interpretation of quantum mechanics. In: Clifford algebra and their applications in mathematical physics. (Eds. J.S.R.Chisholm, A.K.Commons) Reidel, Dordrecht / Boston, 321-346 (1986).
- W.P.Joyce – Dirac theory in spacetime algebra: I. The generalized bivector Dirac equation, J.Phys. A: Math. Gen., 34, 1991-2005 (2001).
- C.Cafaro, S.A. Ali – The spacetime algebra approach to massive classical electrodynamics with magnetic monopoles, Advances in Applied Clifford Algebras, 17, 23-36 (2006).
- V.L.Mironov, S.V.Mironov –Octonic representation of electromagnetic field equations, Journal of Mathematical Physics, 50, 012901 1-10 (2009).
- V.L.Mironov, S.V.Mironov – Octonic second-order equations of relativistic quantum mechanics, Journal of Mathematical Physics, 50, 012302 1-13 (2009).
- V.L.Mironov, S.V.Mironov – Octonic first-order equations of relativistic quantum mechanics, International Journal of Modern Physics A, 24(22), 4157-4167 (2009).
- V.L.Mironov, S.V.Mironov - Noncommutative sedeons and their application in field theory, ArXiv: http://arxiv.org/abs/1111.4035
T.Tolan, M.Tanisli, S. Demir – Octonic form of Proca-Maxwell’s equations and relativistic derivation of electromagnetism, International Journal of Theoretical Physics, 52(12), 4488-4506 (2013). - S. Demir, M.Tanisli, T.Tolan – Octonic gravitational field equations, International Journal of Modern Physics A, 28(21), 1350112 (2013).
- S.V.Mironov, V.L.Mironov - Sedeonic theory of massive fields, ViXra: http://vixra.org/abs/1311.0005
- V.L.Mironov, S.V.Mironov – Reformulation of relativistic quantum mechanics equations with non-commutative sedeons // Applied Mathematics, 4(10C), 53-60 (2013).
- V.L. Mironov, S.V. Mironov — Associative space-time sedenions, http://vixra.org/abs/1401.0162 (2014).
Gravitoelectromagnetism
- J.C.Maxwell - A dynamical theory of the electromagnetic field, Philosophical Transactions of the Royal Society of London, 155, 459-512 (1865.)
- O.Heaviside - A gravitational and electromagnetic analogy, The Electrician, 31, 281-282 (1893).
- V.Majernik - Quaternionic formulation of the classical fields, Advances in Applied Clifford Algebras, 9(1), 119-130 (1999).
- S.Ulrych - Gravitoelectromagnetism in a complex Clifford algebra, Physics Letters B, 633, 631-635 (2006).
- S.Demir, M.Tanışlı - Sedenionic formulation for generalized fields of dyons, International Journal of Theoretical Physics, 51(4), 1239-1253 (2012).
- P.S. Bisht, G. Karnatak, O.P.S. Negi - Generalized gravi-electromagnetism, International Journal of Theoretical Physics, 49(6), 1344 (2010).
- V.L.Mironov, S.V.Mironov, S.A.Korolev - Sedeonic theory of massless fields, ArXiv: http://arxiv.org/abs/1206.5969
- S.V.Mironov, V.L.Mironov - Sedeonic theory of massive fields, ViXra: http://vixra.org/abs/1311.0005 < PDF >
|
|
|